2009年1月20日星期二
Insulator (electrical)
An insulator, also called a dielectric, is a material that resists the flow of electric current. An insulating material has atoms with tightly bonded valence electrons. These materials are used in parts of electrical equipment, also called insulators or insulation, intended to support or separate electrical conductors without passing current through themselves. The term is also used more specifically to refer to insulating supports that attach electric power transmission wires to utility poles or pylons.
Some materials such as glass or Teflon are very good electrical insulators. A much larger class of materials, for example rubber-like polymers and most plastics are still "good enough" to insulate electrical wiring and cables even though they may have lower bulk resistivity. These materials can serve as practical and safe insulators for low to moderate voltages (hundreds, or even thousands, of volts).
Physics of conduction in solids
Electrical insulation is the absence of electrical conduction. Electronic band theory (a branch of physics) predicts that a charge will flow whenever there are states available into which the electrons in a material can be excited. This allows them to gain energy and thereby move through the conductor (usually a metal). If no such states are available, the material is an insulator.
Most (though not all, see Mott insulator) insulators are characterized by having a large band gap. This occurs because the "valence" band containing the highest energy electrons is full, and a large energy gap separates this band from the next band above it. There is always some voltage (called the breakdown voltage) that will give the electrons enough energy to be excited into this band. Once this voltage is exceeded, the material ceases being an insulator, and charge will begin to pass through it. However, it is usually accompanied by physical or chemical changes that permanently degrade the material's insulating properties.
Materials that lack electron conduction must also lack other mobile charges as well. For example, if a liquid or gas contains ions, then the ions can be made to flow as an electric current, and the material is a conductor. Electrolytes and plasmas contain ions and will act as conductors whether or not electron flow is involved.
Telegraph and power transmission insulators
Insulators used for high-voltage power transmission are made from glass, porcelain, or composite polymer materials. Porcelain insulators are made from clay, quartz or alumina and feldspar, and are covered with a smooth glaze to shed dirt. Insulators made from porcelain rich in alumina are used where high mechanical strength is a criterion. Porcelain has a dielectric strength of about 4-10 kV/mm.[1] Glass has a higher dielectric strength, but it attracts condensation and the thick irregular shapes needed for insulators are difficult to cast without internal strains.[2] Some insulator manufacturers stopped making glass insulators in the late 1960s, switching to ceramic materials.
Recently, some electric utilities have begun converting to polymer composite materials for some types of insulators. These are typically composed of a central rod made of fibre reinforced plastic and an outer weathershed made of silicone rubber or EPDM. Composite insulators are less costly, lighter in weight, and have excellent hydrophobic capability. This combination makes them ideal for service in polluted areas. However, these materials do not yet have the long-term proven service life of glass and porcelain.
Design
The electrical breakdown of an insulator due to excessive voltage can occur in one of two ways:
Puncture voltage is the voltage across the insulator (when installed in its normal manner) which causes a breakdown and conduction through the interior of the insulator. The heat resulting from the puncture arc usually damages the insulator irreparably.
Flashover voltage is the voltage which causes the air around or along the surface of the insulator to break down and conduct, causing a 'flashover' arc along the outside of the insulator. They are usually designed to withstand this without damage.
High voltage insulators are designed with a lower flashover voltage than puncture voltage, so they will flashover before they puncture, to avoid damage.
Dirt, pollution, salt, and particularly water on the surface of a high voltage insulator can create a conductive path across it, causing leakage currents and flashovers. The flashover voltage can be more than 50% lower when the insulator is wet. High voltage insulators for outdoor use are shaped to maximise the length of the leakage path along the surface from one end to the other, called the creepage length, to minimize these leakage currents.[3] To accomplish this the surface is molded into a series of corrugations or concentric disk shapes. These usually include one or more sheds; downward facing cup-shaped surfaces that act as umbrellas to ensure that the part of the surface leakage path under the 'cup' stays dry in wet weather. Minimum creepage distances are 20-25 mm/kV, but must be increased in high pollution or airborne sea-salt areas.[4]
[edit] Cap and pin insulators
Higher voltage transmission lines use modular cap and pin insulator designs (see picture above). The wires are suspended from a 'string' of identical disk-shaped insulators which attach to each other with metal clevis pin or ball and socket links. The advantage of this design is that insulator strings with different breakdown voltages, for use with different line voltages, can be constructed by using different numbers of the basic units. Also, if one of the insulator units in the string breaks, it can be replaced without discarding the entire string. Standard disk insulator units are 10 inches (25.4 cm) in diameter and 5 3/4 in. (14.6 cm) long, can support a load of 75 N (15 klbf), and are rated at an operating voltage of 10-12 kV.[5] However, the flashover voltage of a string is less than the sum of its component disks, because the electric field is not distributed evenly but is strongest at the disk nearest to the conductor, which will flashover first. Metal grading rings are sometimes added around the lowest disk, to reduce the electric field across that disk and improve flashover voltage.
[edit] History
The first electrical systems to make use of insulators were telegraph lines; direct attachment of wires to wooden poles was found to give very poor results, especially during damp weather.
The first glass insulators used in large quantities had an unthreaded pinhole. These pieces of glass were positioned on a tapered wooden pin, vertically extending upwards from the pole's crossarm (commonly only two insulators to a pole and maybe one on top of the pole itself). Natural contraction and expansion of the wires tied to these "threadless insulators" resulted in insulators unseating from their pins, requiring manual reseating.
Amongst the first to produce ceramic insulators were companies in the United Kingdom, with Stiff and Doulton using stoneware from the mid 1840s, Joseph Bourne (later renamed Denby) producing them from around 1860 and Bullers from 1868. Utility patent number 48,906 was granted to Louis A. Cauvet on July 25, 1865 for a process to produce insulators with a threaded pinhole. To this day, pin-type insulators still have threaded pinholes.
The invention of suspension-type insulators made high-voltage power transmission possible. Pin-type insulators were unsatisfactory over about 60,000 volts.
A large variety of telephone, telegraph and power insulators have been made; some people collect them.
订阅:
博文评论 (Atom)
没有评论:
发表评论